1. Yogarajan V., Gouk H., Smith T., Mayo M., Pfahringer B. (2020) Comparing High Dimensional Word Embeddings Trained on Medical Text to Bag-of-Words for Predicting Medical Codes. In: Nguyen N., Jearanaitanakij K., Selamat A., Trawiński B., Chittayasothorn S. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Lecture Notes in Computer Science, vol 12033. Springer, Cham. 97-108. (pdf)
  2. Yogarajan, V., Pfahringer, B., & Mayo, M. (2020). A review of automatic end-to-end de-identification: Is high accuracy the only metric?, Applied Artificial Intelligence Journal, 1-19. DOI: 10.1080/08839514.2020.1718343. (pdf)
  3. Mayo, M., & Yogarajan, V. (2019). A nearest neighbour-based analysis to unmask patients from continuous glucose monitor data. Proceedings of the Asian Conference on Intelligent Information and Database Systems (ACIIDS 2019). Lecture Notes on Artificial Intelligence (LNAI), Springer, 349-360. (pdf)
  4. Ragupathy, R., Yogarajan, V., & Luoni, C. (2019). Health Information Research Privacy Standards Should Include Māori Perspectives on Privacy. NZMJ, 132 (1494), 64-67. (pdf)
  5. Yogarajan, V., & Ragupathy, R. (2019). Adoption of International Privacy Standards in New Zealand Health Information Research. NZMJ, 132 (1492), 70-72. (pdf)
  6. Yogarajan, V., & Ragupathy, R. (2019). Research using electronic health records: not all de-identified datasets are created equal. The Journal of Primary Health Care. (pdf)
  7. Yogarajan, V., Mayo, M., & Pfahringer, B. (2018). Protection for Health Information Research in New Zealand District Health Boards. The New Zealand Medical Journal, 131(1485), pp 19-26. (pdf)
  8. Ragupathy, R., & Yogarajan, V. (2018). Applying the Reason Model to enhance health record research in the age of 'big data'. The New Zealand Medical Journal, 131(1478), 65-67. (pdf)


  1. Yogarajan, V., Mayo, M., & Pfahringer, B. (2018). A survey of automatic de-identification of longitudinal clinical narratives. arXiv preprint arXiv:1810.06765


  1. Yogarajan, V. (2018). Automatic de-identification of electronic health records using word embeddings. (Masters Thesis, University of Waikato).
  2. Shanmuganathan, V. (2007). The Phase error of Explicit Runge-Kutta-Nystrom Methods. (Masters Thesis, University of Auckland, maiden name)


  1. Yogarajan, V., Smith, T., Mayo, M. & Pfahringer, B. (2019). Comparing word embeddings to bag-of-words for predicting medical codes. MLSS 2019 London. (pdf)